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An anisothermal, compressible, piezoviscous model
for journal-bearing lubrication
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SUMMARY

Compressibility plays a significant role in the load-bearing capacity of a journal bearing. This paper offers
more realistic modelling of the lubricant than presented in an earlier paper (Int. J. Numer. Meth. Fluids
2007; 55(11):1091–1120) by including variable sound speed, piezoviscosity and both temperature and
shear thinning. The load-bearing capacity of the journal bearing is sensitive to all of these attributes of
the model, but piezoviscosity is found to be the most significant. The equations of motion are adapted to
a moving frame to explore the stability of the journal in a more dynamic setting and it is found that a free
journal using this model will spiral outward exhibiting half speed whirl. The model is discretized in 2D,
semi-implicitly in time and using the spectral element method in space. Numerical results are presented
that highlight the contributions of the different elements in the model to journal stability. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In [1] the load-bearing capacity of a compressible Navier–Stokes fluid was explored and it was
found that setting the speed of sound, c, to typical values found in a lubricant vastly improved
the load-bearing capacity of an otherwise Newtonian incompressible fluid. This paper presents
a model of a fluid that is compressible, anisothermal, shear thinning and piezoviscous. We use,
respectively, the modified Tait equation of state (originated in [2]), Arrhenius, Cross and Barus
law to model the fluid (see [3]). These modifications have an impact on the model by two means.
First, the equation of state for pressure involves temperature as well as density and secondly,
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28 P. C. BOLLADA AND T. N. PHILLIPS

temperature/pressure dependency of the viscosity coefficient in the momentum equations. By
making reasonable assumptions on the model, namely, low volume expansion dependency on
temperature, it is found that the direct effect of temperature in the equation of state on the momentum
equations is negligible, although the isothermal Tait equation still has significant impact. The most
significant impact comes from the pressure–temperature dependency of viscosity. We verify the
conclusion in [4] that piezoviscous effects dominate at high eccentricities where wide ranges of
pressure exist.

The coupling between the energy and momentum equations is governed by the constant, �, in
the Arrhenius law. The value for � used in [5] is four times higher than the highest value used here,
which is taken from [4] (other parameters being commensurate apart from viscosity, which is three
orders of magnitude less). Since viscosity decreases with increased temperature and increases with
increased pressure we expect, by setting the viscosity at room temperature and pressure equal to
atmospheric pressure, that load-bearing capacity will be reduced by the temperature component and
increased by the pressure dependency. The computation for the Arrhenius law becomes unstable
for higher values of c, e.g. for �=10, as in [4], the simulation breaks down for c=1500ms−1 but
is successful for c=1250ms−1 with the other parameter values remaining the same. This implies
that compressibility has a stabilizing role in the simulation.

In previous work on the journal-bearing problem [6–9], it was assumed that the lubricant
was incompressible. Bollada and Phillips [1] introduced compressibility using a linear isothermal
equation of state. Here we introduce a nonlinear equation of state in the form of a modified Tait
equation. In a centenary review of the Tait equation, Dymond and Malhotra [10] explore the
relevance and form of the equation from its inception to modern day validity. It is, however, the
modification due to Kirkwood and Bethe [11] that we adopt here in line with [12, 13] and also
in Keshtiban et al. [14], where the authors investigate features of a compressible Oldroyd B fluid
at various Mach numbers and compressibility within a finite element scheme. The treatment of
pressure in these papers is different from to that presented here, where we replace the pressure
variable by a function of density and temperature. It would then be convenient if density/viscosity
relations were available. However, we have not been able to find many references regarding
density-dependent viscosity and have hence adopted pressure-dependent relations, which in turn
are related to density via an equation of state. The fact that one of the simplest models for
viscosity derived from statistical mechanics is the compressible Navier–Stokes, which effectively
sets viscosity proportional to density (see [15, 16]), suggests that density/temperature-dependent
viscosity relations may be more fundamental than pressure/temperature dependency.

The Tait equation of state reduces to the linear equation of state when an index, m, is set to
unity and has the effect of increasing the speed of sound, c, with density when m>1. On the basis
of the results of [1], an increase in c reduces the load-bearing capacity of the journal bearing.
However, we find that the use of the Tait equation has only a marginal effect on the dynamics, as
might be expected for near incompressible fluids. However, compressibility still has a noticeable
effect at realistic values for the speed of sound and begins to have quite significant effects for
values of the speed of sound approaching 70% of its true value in oil. This strongly suggests that
modelling of the gaseous phase (cavitation) should include some modelling of the speed of sound
(see [17], for example) where the speed of sound drops to a level below that of the liquid and gas
phase within the mixed phase region.

It was found in [1] that it was convenient to work with a kinematic extra-stress tensor, T,
rather than with the dynamic extra-stress tensor, S≡�T, where � is density, since, together with
the use of constant kinematic viscosity, the coupled mass and momentum equations were largely
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ANISOTHERMAL, COMPRESSIBLE, PIEZOVISCOUS MODEL 29

linear. Constant kinematic viscosity is a feature of simple models produced from kinetic theory,
e.g. Woods [15]. There are unavoidable nonlinearites associated with any realistic temperature-
dependent model within the energy equation, but the compressibility of the model introduces
further complications. Even when one assumes a constant Fourier heat conduction coefficient, �,
and heat capacity, CV , the diffusion term remains nonlinear because of its coupling to a variable
density. Just as the equation of state introduces negligible terms into the momentum equations, it
also introduces extra-negligible terms into the energy equation. We revise the model by discarding
these negligible terms.

The thermodynamic equations of state and internal energy are not independent. For an
equation of state dependent on temperature (including isothermal) one cannot choose internal
energy proportional to temperature. We show for an equation of state linear in temperature,
however, that the necessary modification to the energy equation neatly cancels with the isotropic
term, −p∇ ·u (≡−pI :∇u), in the viscous heating contribution. This implies that the viscous
heating term, S :∇u, where S is the extra-stress tensor together, with the assumption e=CV�
routinely adopted in the incompressible model, is effectively unaltered in the compressible
case.

Finally, we generalize the investigation in [1] to include a journal moving within the bearing
such that its centre of mass prescribes a circle with constant angular velocity, �CM , about the
centre of the bearing. To investigate this we adopt a moving frame of reference with a rotating
basis, which has the advantage of modifying the equations only to the extent of introducing the
pseudo-forces—Coriolis and centrifugal. We demonstrate that as �CM approaches half the spin
of the journal about its own centre, �, the azimuthal force reduces to zero. At this critical value
of �CM the direction of the force on the journal can be either inwards or outwards. An inward
value suggests that the journal will move in towards the centre and conversely, as found here, an
outward radial value indicates that the journal will spiral out. This suggests that the journal as
modelled here is unstable and, unless its centre of mass motion is inhibited by a uni-directional
load, the journal is predicted to fail.

2. GOVERNING EQUATIONS

2.1. Conservation equations

The conservation of momentum, or equation of motion, for a fluid is

�
Du
Dt

=−∇ p+∇ ·S (1)

where � is density, p is pressure, u is velocity and S is the extra-stress tensor. The extra-stress
tensor for a compressible viscous fluid is given by

S=�1(∇u+∇uT)+�2(∇ ·u)I (2)

where �1 is the dynamic coefficient of viscosity (shear) and �2 is the second coefficient of viscosity
(dilatational). The quantity 2

3�1+�2 is known as the bulk viscosity [18]. The bulk viscosity is
relevant only in situations where the density is changing. Thus, it plays a role in attenuating sound
waves in fluids and may be estimated from the magnitude of the attenuation.
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The conservation of mass, or equation of continuity, is expressed as

D�

Dt
=−�∇ ·u (3)

The second viscosity coefficient is typically set to �2=− 2
3�1, which means that the bulk viscosity

is zero and ensures that tr(S)=0. This is known as Stokes’ hypothesis.
The conservation of energy equation has the general mathematical form

�
De

Dt
=−p∇ ·u+S :∇u−∇ ·h (4)

where e is the internal energy per unit mass and h is the heat flow vector.

3. EQUATION OF STATE

We consider the following equations of state:

• Linear model:

p=c20(�−�0)+ p0 (5)

where c0 is the speed of sound, �0 is a reference density and p0 is atmospheric pressure.
• Modified Tait equation:

p− p0=c20
�0
m

[(
�

�0

)m

−1

]
(6)

where the constants are defined as in the linear model with the index m a free parameter
depending on the fluid and typically set to m=4 for lubricants and m=1 to recover the linear
model or ideal gas, explored in [1].

• Houpert equation [19, 20]:

p− p0=c20
�−�0

1−B(�/�0−1)
(7)

where B is a free parameter determined by the experiment. We demonstrate that this model
differs very little from the Tait equation for a large range of pressure for a typical lubricant
(see Figure 1).

• Linear anisothermal model:

p=g(�)

(
1+�

�

�0

)
(8)

where �≡�̃−�0, �̃ is the absolute temperature and �0 a reference temperature. The
parameter � is related to the expansion of the fluid at �=0. A value of �=0 corresponds to
isothermal flow and �=1 to an ideal gas equation.

for some isothermal model p=g(�), i.e. we convert each of the equations of state (5)–(7) to its
anisothermal equivalent by multiplying by (1+�(�/�0)).
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Houpert

Tait

Figure 1. The (scaled) pressure using the Tait equation (m=4) and Houpert (dashed) (B=1.53).
The two models are in good agreement for changes in density �∈[�0±�0/10], e.g. for eccentricity

ratio, �=0.8 we find �/�0∈[0.97,1.05].

3.1. Viscosity relations

The viscosity relations explored are:

• Constant kinematic viscosity:

�=�� (9)

which leads to the compressible Newtonian model explored in [1]
• Barus equation:

�=�0 exp(A[p− p0])=�0 exp

(
	
p− p0
p0

)
(10)

for some free parameter A, or 	 being a dimensionless equivalent.
• Shear thinning—Cross model:

�=�∞+ �0−�∞
1+C(k	̇)N

(11a)

where C is a free dimensionless parameter and k is, in general, a function of pressure and
temperature via, for example, the Barus and Arrhenius equations (13b). The strain rate, 	̇, is
defined as

	̇≡
√

∇u :∇u+∇u :∇uT (11b)
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• Temperature thinning—Arrhenius Law:

�=�0 exp

(−��/�0

1+�/�0

)
(12)

for free dimensionless parameter, �.
• Combined Tait–Arrhenius–Barus–Cross:

�=
[
�∞+ �0−�∞

1+C(k	̇)N

]
×k(�,�) (13a)

and

k≡k(�,T )=exp

(
	
p− p0
p0

)
×
(−��/�0

1+�/�0

)
(13b)

where the Tait law is modified to

p= p0+c20
�0
m

[(
�

�0

)m

−1

]
×
(
1+�

�

�0

)
(13c)

The term ��/�0 in (13c) has a negligible and opposing effect on viscosity to the Arrhenius
term and hence we write express as

k≡exp

(
	c20�0
p0m

[(�/�0)
m−1]

)
×
(−��/�0

1+�/�0

)
(13d)

The parameter values are given in Tables I and II. The values for density, viscosity and journal-
bearing dimensions are taken from [1, 21]; other constants are taken from [5].

Figure 1 shows a comparison of the speed of sound for the Tait equation and Houpert equa-
tion with constants m=4 and B=1.53, respectively, suggesting that the models are virtually
interchangeable within a large range of density values.

3.2. The influence of the equation of state on the conservation equations

For flow where thermal effects are taken into account, we assume the existence of an equation of
state:

p= p(�,�)

Table I. The dimensionless parameters appearing in the consti-
tutive relations, equations of state and viscosity laws.

Dimensionless parameter Value

Bi 0.01
	 2.1×10−3

� 2
C 4.2×10−4

� 4×10−4

m 4
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Table II. The dimensional parameter values in S.I. and scaled units.

Parameter Value (S.I. units) Value (scaled units)

RB 0.05m 1
� 500s−1 1
�0 800kgm−3 1
�0 300K 1
RB −RJ 5×10−5m 1×10−3

c0 1500ms−1 60
�0 5×10−3 Pas 1×10−5

�∞ 2.5×10−3 Pas 0.5×10−5

CV 1.75×103Wkg−1K−1 840
� 0.14Wm−1K−1 s−1 1.344×10−4

h 5×10−4m 1×10−2

where � is temperature. So that in general,

∇ p= �p
��

∇�+ �p
��

∇�

It is convenient to express viscosity in the forms

�1(�,�)=�(�,�)�, �2(�,�)=− 2
3�(�,�)� (14)

where � is the kinematic viscosity (chosen constant in [1]). Thus, we can rewrite (1) as

Du
Dt

=−�p
��

∇q− 1

�

�p
��

∇�+∇ ·T+∇q ·T

where the kinematic extra stress is defined

T≡�(∇u+∇uT)− 2
3�(∇ ·u)I≡ 1

�
S (15)

and we define the log density q≡ ln�.
We choose the equation of state, (8), which is linear in temperature �. Using the thermodynamic

law,

dU =�̃dS− pdV (16)

where S is entropy, and noting that the linear equation of state can be expressed in terms of a
specific volume, V =1/�:

p=g(�)
��̃

�0
+g(�)(1−�)=g(1/V )

��̃

�0
+g(1/V )(1−�)

Then the condition on the internal energy is(
�e
�V

)
�̃

=�̃

(
�p

��̃

)
V

− p
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This implies

e = (1−�)
∫

g(1/V )dV + f (�̃)

= −(1−�)
∫

g(�)

�2
d�+ f (�̃)

where f is arbitrary. We choose the simplest option without violating (16) and express the internal
energy as

e=−(1−�)
∫

g(�)

�2
d�+CV �̃ (17)

This implies

De

Dt
= −(1−�)

g(�)

�2
D�

Dt
+CV

D�̃

Dt

= (1−�)
g(�)

�
∇ ·u+CV

D�̃

Dt

With Fourier’s law

h=−�∇� (18)

we now have sufficient information to close the equations, giving

Du
Dt

= −g′(�)

(
1+ ��

�0

)
∇q− �g(�)

��0
∇�+∇ ·T+∇q ·T

= −g′(�)∇q+∇ ·T− �g(�)

��0
∇�+∇q ·

(
T−�g′(�)

�

�0
1
)

The continuity equation can be expressed using q as

Dq

Dt
=−∇ ·u (19)

and finally the energy equation is

CV
D�

Dt
= (1−�)

g(�)

�
∇ ·u+exp(−q)�∇2�+

(
T− g(�)

�

(
��

�0
+1

)
I
)

:∇u

= −g(�)

�
�

(
1+ �

�0

)
∇ ·u+ �

�
∇2�+T :∇u

where we note that the cancellation comes about from ∇ ·u≡I :∇u and the implication that the
adoption of e=CV� is closely connected with the use of the extra stress in the viscous heating
term T :∇u.
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We find that once integrated there are some negligible terms in the momentum equations. With
these terms removed and using the Tait equation for g(�) we are left with momentum conservation:

Du
Dt

=−c20

(
�

�0

)m−1

∇q+∇ ·T (20)

where the kinematic stress tensor, T, is given by (15), mass conservation is given by (19) and the
conservation of energy is

CV
D�

Dt
=exp(−q)�∇2�+T :∇u− g(�)

�
�

(
1+ �

�0

)
∇ ·u (21)

where the last term, which is of order c20�≈102, is significant:

g(�)

�
= c20�0

m�

[(
�

�0

)m

−1

]
+ p0

�
≈ c20�0

m�

[(
�

�0

)m

−1

]

4. THE STATICALLY LOADED JOURNAL-BEARING PROBLEM

Consider the two-dimensional geometry shown schematically in Figure 2. The journal of radius
RJ rotates with a predetermined constant angular velocity � about its own centre. The journal’s
motion is lubricated by a fluid lubricant contained within a stationary bearing of radius RB . Both
the journal and the bearing are assumed to be of infinite extent in the axial z-direction. The
time-dependent eccentricity of the system is denoted by e, with the eccentricity ratio defined by
�=e/(RB −RJ ), 0���1. Therefore, when �=1 the journal is in contact with the bearing and
when �=0 the journal and bearing are concentric.

y

x

e

R

R

B

B

J

J

Ω

Γ

Γ

ω

Figure 2. Schematic picture of a journal bearing with the difference in radius exaggerated for clarity.
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Figure 3. A coordinate system for the journal bearing. This coordinate system has the feature that constant
r describes a circle and radial lines meet at the point (�,0).

The lubricant satisfies the governing equations (15), (19)–(21) which are solved subject to
specified boundary and initial conditions. These are, respectively,

u(x, t)=V(t) with x∈�J , u(x, t)=0 with x∈�B (22)

�(x, t)=�J with x∈�J , ∇�(x, t) ·n=−Bi

h
�(x, t) with x∈�B (23)

u(x, t=0)=u0(x), �(x, t=0)=�0(x) (24)

where �J and �B denote the boundaries of the journal and bearing, respectively. The boundary
condition on the temperature is known as the Biot–Robin condition, where h is a length scale
associated with the problem and Bi is associated with the thermal conductivity of the bearing. See
Li et al. [5] for an extended discussion on this issue.

We consider the following coordinate system in the journal-bearing configuration (see Figure 3)

x = r cos
+�(1−r)

y = r sin

(25)

for r ∈[RJ ,1] and 
∈[0,2�], where the radial distance has been scaled by RB . The eccentricity
ratio, in terms of the scaled radius, is now defined by

�= e

1−RJ
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Figure 4. Plot of the rate of change of gap in the journal-bearing �R/�
 divided by the difference in radii
1−RJ =10−4. The slope is thus very small suggesting that streamlines converge only slightly.

The distance between the journal and the bearing (along a radial spoke) is given by

R≡(1−RJ )
√

(1−2� cos
+�2)

with slope (see Figure 4)

�R
�


= (1−RJ )�sin
√
(1−2�cos
+�2)

and because 1−RJ �1 the slope is small and we expect the stream lines to be near parallel. Since
we are using a (generalized) Newtonian model, this suggests that normal forces are negligible
compared with shear forces (there are no normal forces for a Newtonian fluid in simple shear
flow). This means that even though there can be a large contraction of the flow around the journal
bearing, the transition from large to small gap is gradual as compared with, say, an abrupt 4:1
contraction in channel flow.

The derivatives associated with the transformation are related through

⎡
⎢⎢⎣

�
�r
�
�


⎤
⎥⎥⎦=

[
cos
−� sin


−r sin
 r cos


]⎡⎢⎢⎢⎣
�
�x
�
�y

⎤
⎥⎥⎥⎦ (26)
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so that ⎡
⎢⎢⎢⎣

�
�x
�
�y

⎤
⎥⎥⎥⎦=

[
r cos
/J1 −(sin
)/J1

r sin
/J1 (cos
−�)/J1

]⎡⎢⎢⎣
�
�r
�
�


⎤
⎥⎥⎦ (27)

where J1≡r(1−�cos
).

5. THE WEAK FORMULATION

Let � denote the region between the journal and bearing. At each time step, a solution is sought
in the following spaces:

W={w :wa ∈H1(�),a∈[1,2],w=V on �J ,w=0 on �B}
P=H1(�)

V ={H1(�), v=0 on ��J }
R=[H1(�)]4s

where the extra-stress space R is the space of symmetric 2×2 tensors whose components belong
to H1(�), and �J and �B are the boundaries of the journal and bearing, respectively. We also
define the test space, W0, for the velocity:

W0={w :wa ∈H1(�),a∈[1,2],w=0 on �J and �B}
The weak formulation is then: find u∈W, q∈ P , T∈R and �∈V , such that∫

�

u−un

�t
·w−

∫
�
c2q∇ ·w+

∫
�
T :∇w=0 ∀w∈W0 (28)

∫
�

(
q−qn

�t
+∇ ·u

)
w=0 ∀w∈ P (29)

∫
�
T :W−

∫
�

�∇u :(W+WT)+ 2

3

∫
�

�∇ ·u tr(W)=0 ∀W∈R (30)

CV

∫
�

(
�−�n

�t

)
v+�

∫
�
exp(−qn)∇�·∇v

=�
∫

��B

exp(−qn)∇�n ·nv+
∫

�
Tn :∇unv

−
∫

�
exp(−qn)gn�

(
1+ �n

�0

)
∇ ·unv ∀v∈V (31)

where c2≡�p/�� and �,� are functions of �,q and ċ.
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For enhanced numerical stability, we treat exp(−q)�∇2� semi-implicitly in the energy equation
(31), and all other terms are treated explicitly. The boundary term is treated explicitly since its
contribution is not symmetric when treated implicitly. This implies: Dirichlet boundary conditions
for u; no boundary conditions for q and T; Dirichlet boundary conditions on � on the journal.
We use the Biot–Robin condition on the bearing to control the heat flow out of the bearing:∫

��B

∇� ·nv=−
∫

��B

Bi

h
�v

where Bi is a suitable Biot constant, and h is a characteristic length. On substitution into (31) we
find

CV

∫
�

(
�−�n

�t

)
v+�

∫
�
exp(−qn)∇�·∇v

= �Bi

h

∫
��B

exp(−qn)�nv+
∫

�
Tn :∇unv

−
∫

�
exp(−qn)gn�

(
1+ �n

�0

)
∇ ·unv ∀v∈V (32)

6. SPECTRAL ELEMENT DISCRETIZATION

We refer the reader to [1] for much of the details regarding the discretization depicted in
Figure 5. The results are summarized as follows. The conservation of momentum and mass produce
the system for the velocity field, ūa ≡uai j and log density q̄≡qi j at the GL points (i, j):

ūa · ¯̄Mab= v̄b (33)

where

¯̄Mab= ¯̄Aab+[( ¯̄Cc
T · ¯̄� · ¯̄A−1 · ¯̄Ccab+ ¯̄Cb

T · ¯̄� · ¯̄A−1 · ¯̄Ca)+ ¯̄Ca
T ·( ¯̄c2�t− 2

3
¯̄�) · ¯̄A−1 · ¯̄Cb]�t (34)

and

v̄b≡(ūb)n · ¯̄A+�t ¯̄c2 · q̄n · ¯̄Cb (35)

The log density, q is given by

q̄ · ¯̄A+�t ūb · ¯̄Cb
T = q̄n · ¯̄A (36)

The discretization of the conservation of energy gives an equation for temperature, �̄≡�i j

�̄ · ¯̄N = �̄ (37)

where
¯̄N = ¯̄I −�t

�

CV

¯̄Ca
T · ¯̄� · ¯̄A−1 · ¯̄Ca · ¯̄A−1

�̄=�̄n+ �t

CV
�̄ · ¯̄A−1
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Figure 5. The discretization of the physical domain into four elements in the azimuthal direction and two
in the radial direction. The thick lines outline the 4×2 spectral elements and the dashed lines meet at

Gauss–Lobatto points for order N =4 in both directions.

We also require a boundary integral due to the Biot–Robin condition. For elements next to the
bearing (�= �̂):

∫
��

�v =
∫ 2�

0
�(�)v d�

= Nk

�̂∑
�=0

∫ 1

−1
�(�N ,�)hl(�)

��

��
d�

= Nk

�̂∑
�=0

��̂,�
N ,l

(
��

��

)�

l
�l

=
�̂∑

�=0
��̂,�

i j Ni jlNk

(
��

��

)�

l
�l

=
�̂∑

�=0
��̂,�

i j B�
i jkl
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where the local matrix

B�
i jkl ≡Ni jlNk

(
��

��

)�

l
�l

Other matrices are defined:

(ūa)i j ≡uai j , ( Ā)i jkl ≡ Ai jkl , (T̄ ab)i j ≡T ab
i j , ( ¯̄Cb)i jkl ≡Cb

i jkl , (q̄)i j ≡qi j

( ¯̄�)i jkl ≡�klik jl , ( ¯̄c2)i jkl ≡c2klik jl , ( ¯̄�)kl ≡(�/�kl)ik jl , ( ¯̄Ca
T )i jkl ≡Ca

kli j

�̄kl ≡ T̄ ab
kl (ū

a · ¯̄Cb
T )kl − g(�kl)

�kl
�(1+�kl)(ū

a · ¯̄Ca
T )kl − �Bi

h
exp(−q)�̄n · ¯̄Bkl

The array ¯̄A contains weights, �i , and the Jacobian, Ji j , of the spectral element mappings; ¯̄Cb≡
C̄i jkl
b is the discretization associated with the gradient operator, ∇:

Āi jkl ≡
∫
S
J (�,�)hi (�)h j (�)hk(�)hl(�)= Ji j�i� jkil j (no sum)

C̄i jkl
b ≡

∫
S
Zcb(�,�)hi (�)h j (�)[hk(�)hl(�)],c=�i� j Z

cb
i j

{
Dikl j , c=1

ki D jl , c=2

(38)

Further information regarding differential operators, Di j ≡h′
i (� j ), Z

cb
i j assembling global arrays

from local arrays can be found in [1].
6.1. The force on the journal due to the fluid

The force, F, on the journal is given by

F≡−
∫
C
r·ndC (39)

where C is the boundary of the journal, n is the unit outward normal to the boundary (radial
direction) and r≡−pI+S is the total or Cauchy stress. In two dimensions, this is conveniently
expressed as

Fa =
∫
C

�ab�bc dxc (40)

where �bc is the second-order alternating symbol. In fact, a good approximation to the force in
this application is obtained by ignoring the extra stress, S, contribution altogether and expressed
the components of force as

Fa =
∫
C

�ab�bc dxc=
∫
C
(Sab− pab)�bc dxc≈−

∫
C
p�ab dxb (41)

Using Gaussian quadrature on the journal boundary this is (see [1])

Fa =∑
j

� j (−p(�0, j )
ab+�0, j T

ab
0, j )�

bc �xc

��

∣∣∣∣
0, j

, j ∈[1,N (�+1)] (42)
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Similarly, the resultant torque, �, on the journal is given by

�= R
∫
C
Sabna dxb (43)

7. THE EFFECT OF THE TAIT, BARUS, ARRHENIUS AND CROSS MODEL ON
LOAD-BEARING CAPACITY

In an earlier paper [1], it was shown that the load-bearing capacity increases with viscosity; hence,
we expect temperature thinning to decrease this capacity given the high operating temperatures
within the journal bearing. We also expect shear thinning to reduce the load-bearing capacity as a
result of reduction in the average viscosity. On the other hand, the use of the Barus law is predicted
to increase the average viscosity. These models have been explored for incompressible fluids in a
dynamically loaded setting, for example, in [5]. Here we explore these models together with the
Tait equation to examine the similarities and differences that compressibility introduces.

Figure 6 shows the forces away from the narrow gap at eccentricity ratio �=0.8 for a range of
combinations of the models and reference sound speed (c0=1000,1250,1500ms−1) corresponding
to respectively smaller values of Fx .‡ The dimensions are scaled so that a unit of force/unit
length corresponds to �0R

3
J�

2=(800kgm−3)(0.05 m)3(500s−1)2=25000Nm−1 and so the forces
involved here are of the order of 106Nm−1 (this corrects an error in [1], where the forces
shown are in the scaled units and not Newtons as indicated). The relation implies that force is
proportional to density, to the cube of journal radius and square of angular velocity. The symbols—
cross, box, circle and diamond—represent the compressible Newtonian, Barus, Barus+Arrhenius,
Barus+Arrhenius+Cross models, respectively. The small and large symbols are constant sound
speed and Tait equation, respectively. The scaling in the figure disguises the fact that all the results
have a similar component of force in the y-direction, i.e. normal to the line joining the centres of
the journal and bearing. In the x-direction, however, there is an appreciable difference between
the constant kinematic viscosity (compressible Newtonian) and the other models.

These results show that modelling the equation of state with the Tait equation produces results
varying only slightly from those with a linear equation of state. This observation is to be expected
for a near incompressible fluid.

As a measure of stability in a fluid for the journal bearing, we define a stability measure:
�=−Fx/Fy , for which we have stability when �→∞ and increasing instability for ��0. Using
this criterion there is little difference between the models: Barus, Barus+Arrhenius and Barus+
Arrhenius+Cross, see Table III. In comparison, the constant kinematic viscosity model offers
significantly less stability at these values.

The force on the journal is dominated by the pressure around the journal. Two sets of pressure
profiles around the journal, with the narrow gap marked by vertical lines, are shown in Figure 7
showing pressures of the order of 500Bar. The left-hand set are for the higher value of c0=
60RJ�=1500ms−1 and the right-hand set for c0=40RJ�=1000ms−1. In the flow converging
to the narrow gap the pressure is high and while leaving the narrow gap, it is low. The highest
(and lowest) pressures are achieved with the Barus model with a Tait equation of state. These

‡Respectively, red, blue and green, in the electronic version.
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Barus

Barus+Arhenius

Barus+Arhenius

+Carreau

Newtonian

Fx

F
y

Figure 6. The load-bearing capacities for a range of models at eccentricity ratio �=0.8, where we
assume that the point of application is at the centre of the journal located at the origin. Fx ,Fy is
the force/unit length in units of �R3

J�
2=25000Nm−1, so that the forces shown are of the order

of 106Nm−1. The squares, circles, crosses and diamonds correspond to the Barus, Barus+Arrhenius,
Barus+Arrhenius+Cross and Newtonian models, respectively. The lower sound speeds increase the
component of force away from the narrow gap in the x-direction. The smaller symbols are for a constant

sound speed model (or m=1 in the Tait equation).

Table III. The value of the stability factor, �, for a range of models and
sound speeds at eccentricity ratio �=0.8.

Viscosity model c0=40 c0=50 c0=60

Constant kinematic 0.19 0.12 0.09
Barus 0.51 0.43 0.38
Barus+Arrhenius 0.48 0.41 0.35
Barus+Arrhenius+Cross 0.45 0.38 0.31

The results suggest that increased compressibility (lower speed of sound)
improves stability. A typical lubricant will have speed of sound c0=60RJ�=
1500ms−1.

results show that pressure is affected by sound speed and suggest that an incompressible model
will exhibit a reduced range of pressure. The lack of perfect asymmetry about the narrow gap is
responsible for the beneficial x component of the force away from the narrow gap.

The value p=0 is the actual zero pressure and not atmospheric pressure which is at a value
of pa =0.2�R2

J�
2=105 Pa≡1Bar. However, at the values shown in Figure 7 it is a reasonable

approximation to take pa ≈0 and model the onset of cavitation by assuming the cavitation region
to exist in the region where p<0. The effect of cavitation can be modelled as a single phase
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Figure 7. Pressure on the journal (the narrow gap is at 
=0) in units of �0�
2R2

J ≈2.5Bar. Plots on
the left (in red in the electronic version) are for c0=60RJ�; on the right (in blue in the electronic
version) c0=40RJ�. The narrow gap is located, respectively, by the red and blue vertical lines, i.e.

the two plots for the two sound speeds are displaced for ease of comparison.

fluid by assuming zero or near zero viscosity in this region, (see [7], where this is explored).
However, Williams and Williams [22] show that a lubricant has a variable critical tensile strength
(or negative pressure) before the liquid ruptures. This is shown to be in the region of 38Bar,
which in our units is of the order −38Bar=−38pa =−7.6. Figure 8 shows the cavitation region
for a Barus–Arrhenius–Cross–Tait model for c0=1500ms−1 and �=0.8. Naturally, as the tensile
strength of the liquid decreases, say due to higher temperatures, this region gets larger.

Figure 9 shows that difference in the pressure profile on the journal, although affected by
sound speed, is only slight (∼0.5%) as c0 increases beyond c0=1500ms−1 and suggests that an
incompressible model should give comparable, but not identical, results. This is in contrast to the
incompressible Navier–Stokes, which exhibits a markedly different pressure field to that of the
compressible Navier–Stokes.

Figure 10 shows the effect of varying eccentricity ratio, �, on the force on the journal for the
full model for sound speed c0=1250ms−1. The force increases with � not only in magnitude but
also in � (Table III). Thus, the stabilizing force improves with �. The curve shown in Figure 10 is
fitted and is given by

Fx = 93.0

√
�

1−�

Fy = 0.008
�

−1+�
−6.488

�2

(−1+�)2
−1.236

�3

(−1+�)3
−0.162

�4

(−1+�)4

(44)
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Figure 8. Pressure on the journal about the narrow gap for the full model for c0=1500ms−1. The shaded
region indicates where pressure falls below the cavitation pressure, −38Bar. For stronger materials this
region becomes smaller. Higher temperature weakens the fluid and, in practice, the critical cavitation

pressure, pc, can be much nearer p=0.

8. THE INFLUENCE OF CENTRE OF MASS MOTION ON THE FORCE ON THE
JOURNAL BEARING

We are interested in the force on the journal as its centre of mass moves in a circular path about
the centre of the bearing. This is of interest for issues of both journal-bearing stability and to allow
computation of the force on the journal depending on the velocity (as well as the position) of its
centre of mass. Compute the position and velocity of the centre of mass of the journal at any time
is usually achieved by computing the force on the journal at every time step (see, for example
[5]). An alternative is to evaluate the force on the journal for all positions and velocities of the
journal centre so that the evolution of the free journal’s motion is then integrated as a particle
of mass MJ in time using Newton’s second law. The extra cost involved in this approach is the
requirement of full knowledge of F as a function of three variables r, 
̇, ṙ (although not 
 because
of symmetry). It is probably safe to neglect ṙ and fit the two surfaces (both components of force)
to a discrete set of results in the manner of equation (44), making such an approach viable. Once
this force field is known, many simulations can be quickly computed in a variety of dynamically
loaded scenarios. In this section we search for ‘equilibrium’ points in the sense that the force in
the azimuthal direction (the Fy force illustrated in Figure 10) vanishes at certain rotation speeds,
�CM , of the journal’s centre of mass about the centre of the bearing. The critical value of �CM
is seen to be approximately half that of the journal’s spin, � (half speed whirl). At this critical
value, the radial component is found to be near zero, but is positive and suggests that the journal
is unstable (for c0=1500ms−1). This provides a more definitive measure of the stability of the
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(p| -p| )/(c50 60 0 )
2

Figure 9. The pressure difference (p|50− p|60)/(c20�0) on the journal surface, for the
Barus–Arrhenius–Cross model.

journal bearing than the � parameter used in the previous section and may be used to effectively
compare the stability of different models for fluid within the journal bearing.

We introduce a moving frame so that, for a given eccentricity ratio �, and angle �(t)=�CMt ,
the grid is that shown in Figure 5. In a rigid rotation frame, the equation of motion for the relative
velocity u∗ is

Du∗

Dt
+2x×u∗+x×(x×x)=−∇ p+∇ ·S (45)

where, x=�CMk. The constitutive relations, being spatial derivatives only, are unchanged, e.g.
∇u→∇u∗. The two pseudo-forces appearing on the left-hand side are known as the Coriolis and
centrifugal force, respectively. The material derivative of q can be expressed as

Dq

Dt
= �q

�t

∣∣∣∣
space

+(u∗+x×x) ·∇q= �q
�t

∣∣∣∣
rot

+u∗ ·∇q

hence, the mass conservation is effectively unaltered in the form

�q
�t

∣∣∣∣
rot

+u∗ ·∇q=∇ ·u∗ (46)

and similarly with the energy conservation equations.
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Fx

Fy

Figure 10. Force/unit length in units of �R3
J�

2=25000Nm−1 on the journal for the full
Tait+Barus+Arrhenius+Cross model with speed of sound c0=50RJ�=1250ms−1 for

different eccentricity ratios �.

In two dimensions, with the rotation of the plane about the normal to the plane, x=�CMk,
(45) becomes

Du∗

Dt
+2�k×u∗+�2x=−∇ p+∇ ·S (47)

where the position, x, and operator ∇ all refer to the coordinates moving with the rotating frame.
The semi-Lagrangian treatment of the convection term as explained in detail in [1] is modified only
to the extent that the relative velocity, u∗, is used instead of u to find the previous particle position
from its current position at a GLL point. This implies, for example, that a particle stationary in the
moving frame at a point, p, contributes Du∗/Dt |p =0. However, there is an option here to merge
the Coriolis and centrifugal forces into a modified semi-Lagrangian method.

The discretization of the new term 2�k×u∗ alters (34) by

¯̄Mab→ ¯̄Mab+2��ab ¯̄A
Unfortunately, this destroys the symmetry of the discrete operator and hence we incorporate the
Coriolis term explicitly. Thus, the right side of (33) given by (35) is altered by

v̄b→ v̄b−�t (2��abūna · ¯̄A+�2 x̄b · ¯̄A)

where x̄b holds the positions of the GLL points and �ab is the alternating tensor.
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Table IV. Table of values showing the outward radial force/unit length in units
of �R3

J�
2=25000Nm−1 on a journal when the journal centre rotates about the

centre of the bearing at �≈0.514� at different eccentricity ratios, �.

� � Fradial, c=1500ms−1 Fradial, c=1000ms−1

1/2 0.5141 0.104 0.117
2/3 0.5142 0.130 0.145
3/4 0.5142 0.155 0.170
4/5 0.5142 0.178 0.191
5/6 0.5142 0.199 0.212
6/7 0.5142 0.219 0.234
7/8 0.5143 0.245 0.258
8/9 0.5143 0.267 0.284
9/10 0.5143 0.290 0.313

The value of � is shown for c=1500ms−1 but is effectively unchanged for the
lower value of c0=1000ms−1. The result shows that a free journal will spiral out
and stability is not improved by a lower speed of sound.

8.1. Half speed whirl

It is well known that a freely rotating journal within a bearing undergoes what is known as ‘half
speed whirl’. This is a phenomenon whereby the centre of mass of the journal rotates at a frequency,
�CM , half that of its spin, �. The suggestion that whirl instability occurs in the dynamically
loaded journal with zero applied load has been made by many investigators and a journal that
exhibits this effect is deemed to have failed. Full cavitation modelling is expected to mitigate
this effect by damping out the self-excited instability. We can investigate this effect by looking
for frequencies, �, where the azimuthal force falls to zero. Using a simple bisection method, we
find that the critical angular velocity, �, is approximately 0.514� for a range of eccentricities, �.
The model used is the full Tait–Barus–Arrhenius–Cross model and the results suggest that a free
(i.e. unloaded) journal is unstable and spirals outwards indefinitely. Table IV gives that the values
obtained for the radial force indicate that the outward force increases with eccentricity, with the
angular velocity remaining approximately constant. The appearance of the vortex is substantially
altered (see Figure 11) by the rotation. Other field variables behave quite differently, e.g. both
∇ ·u and q≡ ln� are approximately zero, the temperature, �, becomes a function of the radial
coordinate only and the principal stress becomes a function of the azimuthal coordinate only with
reflection symmetry about the x-axis.

9. THE BEHAVIOUR OF THE FIELD VARIABLES WITHIN THE JOURNAL BEARING

Figure 11 shows the velocity field for �=0.9, which indicates a region of recirculation for both the
static and rotating frames. As is usual the dimensions of the fluid domain have been exaggerated
in the figures in order to explore the dynamics within the thin fluid domain. Scalar values of
the true field are simply displaced by this transformation. In order to display vector quantities,
one needs to find the tangent map associated with the transformation used (a display of the true
field in the exaggerated domain looks unphysical and misleading). Let us define the mapping
given by (26) by ��,RJ :(r,
) �→(x, y) and the mapping used to display figures such as Figure 11
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Figure 11. Streamlines and velocity magnitude for eccentricity �=0.9, revealing the recirculation
region where the velocity field rotates in an opposite sense to the journal. The left-hand picture
is for the static journal and the right is for centre of mass rotation �CM =0.514�. The vortex

size clearly increases as �CM →�/2.

as ��′,R′
J
:(r,
) �→(X,Y ), where the values used for the display pictures are �′ =0.4, R′

J =0.5

(as compared with RJ =0.999). Then �−1
�,RJ

◦��′,R′
J
:(x, y) �→(X,Y ). This induces a linear map

u′ =uA−1BA′, where A is the matrix associated with (26):

A=
[
cos
−� sin


−r sin
 r cos


]
, B=

[
� 0

0 1

]
, A′ =

[
cos
−�′ sin


−r ′ sin
 r ′ cos


]
(48)

where �≡(1−R′)/(1−R) and r ′ = R′+�(r−R). Figure 11 shows some streamlines against a
background of velocity magnitude. The recirculation region forms more than half of the domain
and may suggest a mechanism for journal-bearing efficiency in that the journal does not apparently
drag round all the fluid except in the case of low eccentricity. The recirculation region can be seen
to move at lower speed than the fluid closer to the journal.

For an incompressible fluid, the momentum field is of no more interest than the velocity field.
However, for the compressible case we expect qualitative differences due to variable density.
Figure 12 shows the magnitude of the momentum field on the left and the velocity field on the
right. We note that, unlike the velocity field, there is a strong asymmetry in the magnitude of
momentum field about the line through the journal and bearing centres (the x-axis).

The temperature field is shown for sound speed c=1500ms−1 in Figure 13. We note that the
lower value of c creates a wider temperature distribution. The temperature effects the viscosity
through the Arrhenius factor exp(−��/(�+�0)). This distribution is shown in Figure 14 and
may be compared with the temperature in Figure 13, where we note that the factor is larger for
lower values of temperature, �; hence, creating a higher viscosity area away from the narrow
gap. Perhaps the most surprising observation about the temperature plots is the loss of symmetry.
There are two hot areas asymmetrically distributed either side of the narrow gap and of different
magnitudes. Figures 15 and 16 demonstrate that the temperature field is almost at the limiting
value, limc0→∞ �, when c0=60RJ�=1500ms−1. This result suggests that, for realistic values of
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Figure 12. Magnitude of momentum p=�u (left) and velocity u (right). The variation in density about
the narrow gap brings about a loss of symmetry in the contours of momentum magnitude as compared

with contours of speed. This becomes more marked at a lower speed of sound.
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Figure 13. Contours of temperature, �/�0 for sound speed c0=60RJ�. The higher temperatures are
found in the fluid entering the narrow gap.

c0, the temperature field is well approximated using an incompressible model, which is common
practice.

The viscosity is affected via the temperature and is shown in Figure 17 for two different values
of c, where we note that there is a sharper gradient at the narrow gap for the lower value of sound
speed for an otherwise similar range of other parameters.
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Figure 14. Contours of the Arrhenius factor, exp −��
�+�0

, for sound speed c0=1500ms−1.

Figure 15. Temperature difference, (�|50−�|60)/�0, for the two sound speeds c0=50RJ�
and c0=60RJ� with the Cross model.
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Figure 16. Temperature, �/�0, for sound speeds c0=40RJ� and c0=4060RJ� on the bearing (1000
and 1500ms−1, respectively). The profiles for temperature almost coincide except for the peak value at
the narrow gap, which exhibits a higher temperature for the lower speed of sound. The Cross model has

a marked effect on the temperature profile, the journal-bearing fluid being at a higher temperature.
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Figure 17. Contours of viscosity, �/�0: speed of sound, c=1500ms−1 (left), c=1000ms−1 (right). The
lower sound speed (right) generates a larger range of viscosity.

The principal stress is shown in Figure 18 for two values of speed of sound, c0. Comparing
this field with that of the velocity we note the correspondence between the area of low stress
(<0.02) and where the motion of the fluid is approximately clockwise (opposite to that of the
journal rotation). The area on the journal at the narrow gap is also near zero and, in fact, has a
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Figure 18. Contours of the principal stress: c=1500ms−1 (left), c=1000ms−1 (right).
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Figure 19. Contours of ∇ ·u: c=1500ms−1 (left), c=1000ms−1 (right). The lower sound speed is
associated with larger values for the divergence of u.

shear stress opposite to that of the shear stress on the rest of the journal. The lower sound speed
leads to a slight increase in stress levels.

It is also interesting to inspect the values of ∇ ·u for an incompressible fluid, which is shown
in Figure 19. This reveals a significant difference between a fluid with c0=1500 and 1000ms−1.
We notice in particular, a region adjoining the narrow gap where there is net volume flow out and
another area also adjoining the journal where there is a net volume flow into the region. Now these
results are for steady state and thus ∇ ·(�u)=0, which implies

∇ ·u=−1

�
∇�·u≡−∇q ·u

Hence, for regions with ∇ ·u>0 the density, �, decreases in the direction of the flow, which in
turn explains, for example, the lower pressure immediately downstream from the narrow gap.
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10. SUMMARY OF OBSERVATIONS AND FUTURE MODELLING

In this paper different aspects of a mathematical model for lubricated oils have been described. The
different components of this model have been isolated to monitor their influence on load-bearing
capacity. The model includes an equation of state that depends on both temperature and density,
viscous heating, temperature and strain rate thinning and piezoviscosity. There is an interplay
between these different aspects of the model within the journal bearing. The equation of state
has limited direct impact on the dynamics because of the use of a small expansion parameter, �.
Thus, the only non-negligible coupling between the energy and momentum equations is via the
temperature thinning viscosity.

The model predicts instability in the free (unloaded) journal. This instability would be inhibited
by the application of a uni-directional load because the journal is then not able to exhibit whirling.
On the other hand, this result suggests that an oscillatory load could not be sustained by such a
model fluid without breaking down.

We have avoided cavitation modelling at this stage, which will be a major feature in subse-
quent papers, in order to study what effects the model exhibits (if any) by the combination of
compressibility with a generalized Newtonian model. In particular, it is observed that for values of
c0>1500ms−1, the temperature and pressure profiles do not significantly change. The implication
here is that many of the properties of the lubricant are adequately captured by an incompressible
model. However, for values of c<1250ms−1 the model begins to show differences that indicate
the importance of the role of compressibility in cavitation modelling, which is essential to realistic
lubricant modelling due to the stresses present in typical journal-bearing operation.
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